Reducing the Exhaust Velocity for High Volume Flow Laboratory Exhausts

> A Case Study for the U.C. Davis Robert Mondavi Institute for Wine and Food Sciences

Presented at Labs for the 21st Century October 22, 2003

By

Brad Cochran Cermak Peterka Petersen, Inc. (CPP)

OUTLINE

Applicable Exit Velocity Standards/Guidelines Issues Associated with Reducing the Exit Velocity Stack-Tip-Downwash **Rain Infiltration** Case Study – UC Davis RMI Exhaust Parameters Evaluated **Dispersion Modeling Results** Energy/Cost Issues

Applicable Exit Velocity Standards/Guidelines

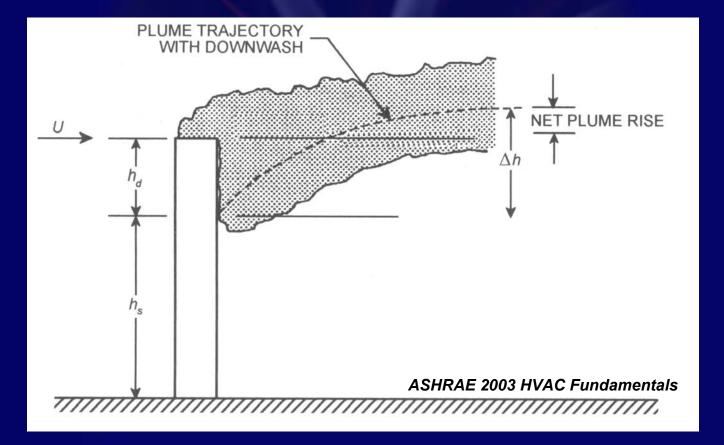
3000 fpm – ANSI/AIHA Standard for Laboratory Ventilation, Z9.5-2003.

1500 to 2000 fpm – ASHRAE Handbook-HVAC Applications, 2003.

Issues Associated with Reduced Exit Velocity Exhaust Stacks

Pros:

 Smaller Fan and/or Motor Requirements
Lower Energy Consumption
Reduced Noise and Vibration

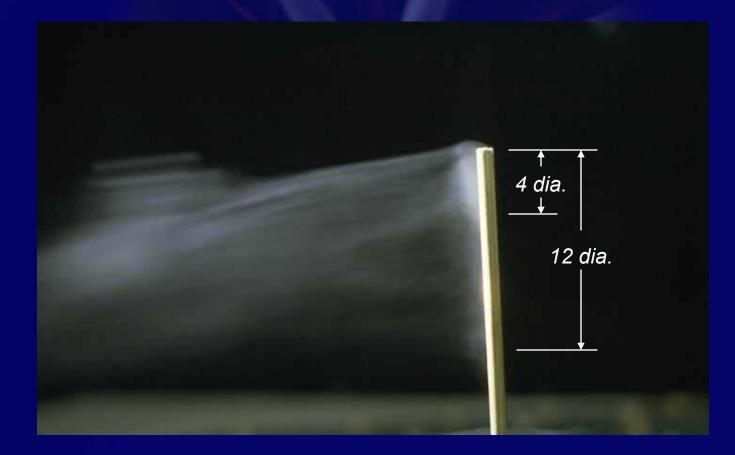

Cons:

Stack-Tip-Downwash

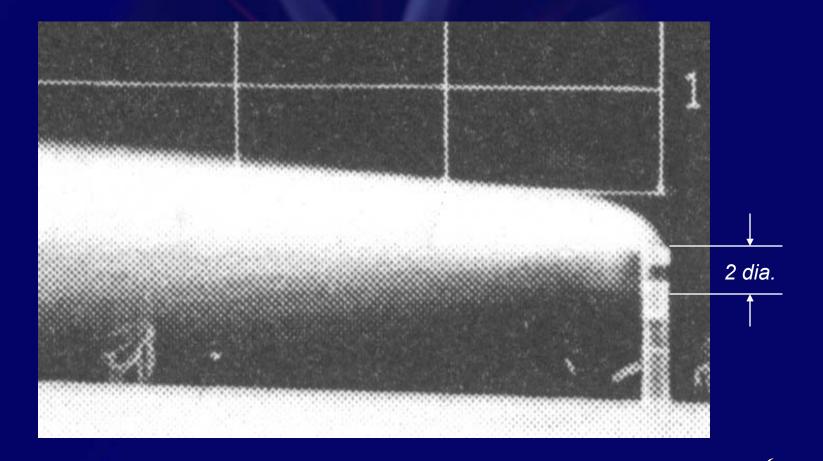
- Decreased Plume Rise
 - Increase Downwind Concentrations
- Need for Greater Stack Heights

Potential Rain Infiltration

Stack-Tip-Downwash

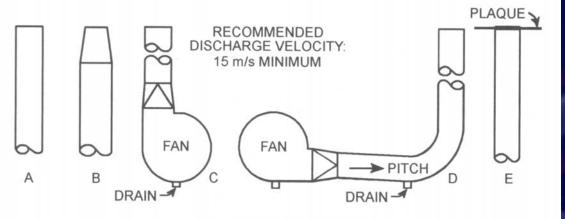

Stack-Tip-Downwash

Ratio of Exit Velocity/Approach Wind Speed Required to Avoid Stack-Tip-Downwash

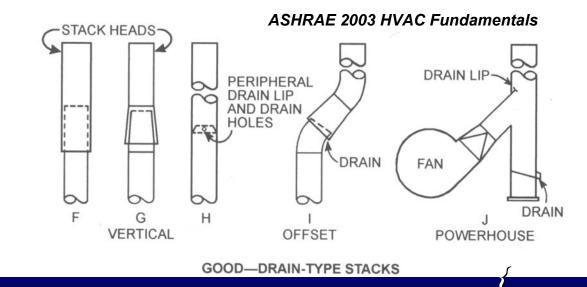

Subcritical Reynolds Number: Ratio of 1.5 for Re < 2 x10⁵. (12 in dia. stack, 20 mph wind, 2000 cfm)

Supercritical Reynolds Number: Ratio of 1.1 for Re > 4 x10⁵. (24 in dia. stack, 20 mph wind, 10,000 cfm)

Stack-Tip-Downwash from a low Re exhaust stack



Stack-Tip-Downwash from a high Re exhaust stack



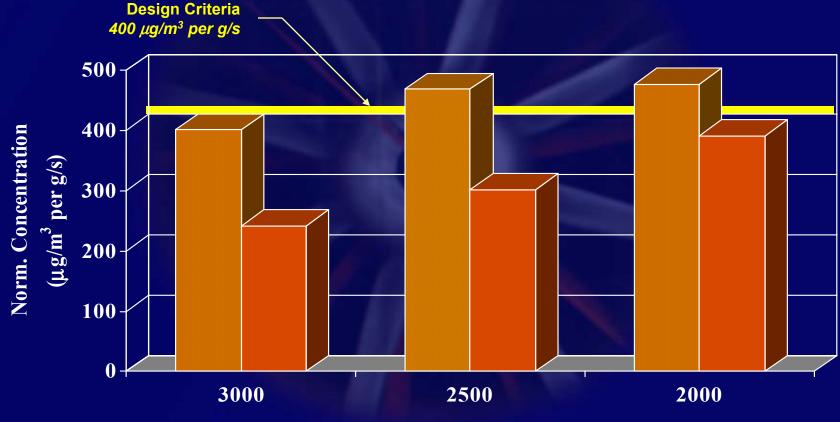
Rain Infiltration

(Manifolded stacks typically already have some rain protection designed in to accommodate redundant stacks)

BEST-NO CAPS OR HEADS

University of California, Davis Robert Mondavi Institute for Food and Wine Science

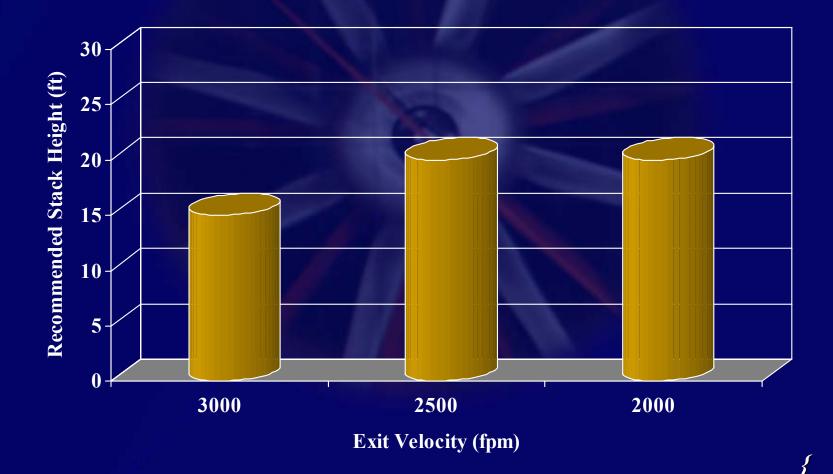
University of California, Davis Robert Mondavi Institute for Food and Wine Science


Exhaust Parameters

Stack Diameter	Height Above Base (ft)	Volume Flow Rate (cfm)	Exit Velocity (fpm)	
50 Inch	15.0	40,000	3,000	
54 Inch	15.0	40,000	2,500	
60 Inch	15.0	40,000	2,000	

Fan Operating Parameters (40,000 cfm Volume Flow Rate)

Exit	Static	Fan Motor Horse		l Power evel	Per Stack Annual Energy			
Velocity (fpm)	Pressure (in WG)	Power (BHp)	Inlet	Outlet wA		Consumption Sa		avings (\$)
լլիայ		(JHP)				(Φ)		(v)
2,000	3.0	26.0	87	89	169,900	\$ 16,990		(-)
2,500	3.2	27.2	87	90	177,700	\$ 17,770	\$	780
3,000	3.4	28.6	88	90	187,000	\$ 18,700	\$	1,710
			101	$\sim \chi$				


Maximum Measured Concentration vs. Exhaust Stack Exit Velocity

Exit Velocity (fpm)

15 ft Stack Height 20 ft Stack Height

Recommended Stack Height vs. Exhaust Stack Exit Velocity

Reducing the Exit Velocity from 3000 fpm to 2000 fpm:

- Increased the recommended stack height from 15 ft to 20 ft above the local roof
- Reduced the fan horsepower from 28.6 BHp To 26.0 BHp
- Saved 17,100 kW-Hr / Yr per fan in energy consumption
- Saved ~\$10,260 in annual energy costs for 12 exhaust stacks
- Reduced both the inlet and outlet sound power levels.

The current exhaust velocity design guidelines in ANSI/AIHA Z9.5–2003 may be overly restrictive for high volume exhaust systems.

The current exhaust velocity design guidelines in ANSI/AIHA Z9.5 – 2003 may be overly restrictive for high volume exhaust systems.

Reducing long-term energy consumption, while maintaining adequate air quality is a balance that requires a site specific evaluation of the exhaust system performance.

The current exhaust velocity design guidelines in ANSI/AIHA Z9.5 – 2003 may be overly restrictive for high volume exhaust systems.

Reducing long-term energy consumption, while maintaining adequate air quality is a balance that requires a site specific evaluation of the exhaust system performance.

Extending a typical air quality assessment to include an evaluation of the designed exit velocity provides the design team with the opportunity to optimize equipment costs and energy consumption while maintaining a stack design that fits within their design concepts.