CPP~

Wind Engineering Consultants

Specifying Exhaust Systems to Minimize Energy Cost While Maintaining Acceptable Air Quality

> Laboratories for the 21st Century October 6-9, Raleigh/Durham, NC

> > by Ron Petersen, Ph.D. and John Carter Cermak Peterka Petersen, Inc. <u>rpetersen@cppwind.com</u>

OUTLINE

Reentry of Pollutants

- Specification of Acceptable Exhaust Design
- Relating Energy Cost to Exhaust Design

Examples from Recent Projects

Acceptable Air Quality & Reentry of Pollutants

Specifying Exhaust and Intake Systems by Petersen, Cochran and Carter ASHRAE Journal, August 2002

Plume impact on taller downwind building

Plume impacting taller upwind building

Specifying an Acceptable Design

Identify Exhaust Sources of Concern

Develop Design Criteria

Concentration (or Dilution) Predictions (Numerical Modeling; Physical Modeling; Full Scale Testing)

No

Modify Design or Criteria Design Acceptable ?

{

Identify Sources of Concern

Boiler

Cooling Tower

Biosafety Cabinet & Isolation Room

Chemical Fume Hood

Traffic

Emergency Generator

Diesel Vehicles

Also:

Kitchen Hood Exhaust

•Ethylene Oxide (EtO)

Helicopter

Concentration Design Criteria (continued)

Health Limits (C health) ELowest of ACGIH, OSHA and NIOSH • STELs (15 Minute Averaging Time) • 8 hr TWA multiplied by 3 Safety Factor of 5 (ANSI/AIHA Z9.5 – Changing)

Codor Thresholds (C odor) *«ACGIH*; various research

lod by the American Conte

Concentration Design Criteria (continued)

Mass emission rates (m)
Chemical hood emissions
EPA equation for accidental spill

 $m? 6.94 \times 10^{?4} (1? 0.0043 [T? 273.15]^2) U_r^{0.75} A M \frac{V_p}{V}$

1 minute lecture bottle evacuation

General Design Criteria

ASHRAE Lab Handbook Chapter 13
Use 5000:1 for 1000 cfm flow
Use 400 mg/m³ per g/s

ASHRAE 110 Fume Hood Testing
Use 3000:1 for 1000 cfm flow
Use 700 mg/m³ per g/s
AM.05 Rating.

ſ

Concentration Predictions Analytical – may add energy cost Computational Fluid Dynamics (CFD) – not ready for routine applications Wind Tunnel Modeling (WT) – most accurate, best for optimizing design See previous presentations @ www.epa.gov/labs21century

Wind Tunnel Modeling -- Like a Field Study, Controlled Meteorology, Design Changes

Wind Tunnel Concentration Measurements at Air Intake

Relating Energy Costs to Exhaust Design

Exhaust Design Factors Affecting Energy Costs

 Air Intake Locations
Building Design and Existing Environment
Chemical Utilization
Volume Flow/Exit Velocity
Local Meteorology

Exhaust Evaluation Approach

Air quality acceptability question:

LEEDS Credit 9.1 -- Meet all standards and generally accepted guidelines for outdoor protection of workers and general public from airborne chemical, radioactive and biological hazards. Use mathematical modeling, physical modeling and/or post construction testing and certification to prove compliance.

Factors Affecting Concentration

$$C? \frac{m}{\{??_{y}?_{z}U_{s}\}} \exp[?\frac{H^{2}}{2?_{z}^{2}}]x 10^{6}$$

$$\frac{1}{\{? \; ? \; y \; ? \; z \; U_s\}}$$

Site and Design Effects Term

$$m? \exp[? \frac{H^2}{2? \frac{2}{z}}]$$

Energy Term

Plume Rise Predictions – Main Energy Term

$H \sim h_s + A [CFM \times FPM]^{1/3}$

~ Fan Horsepower

Entrained Air Stacks on Lab Roof

Conventional vs. Entrained Air – 20 mph

Examples

CDC Building 110

Pomona College

Commercial Medical Research Lab

Stack Design and Results Information

		Stack	Volume	Exit	Motor	Annual	Design	Max
Source	Stack	Height	Flow Rate	Velocity	Size ¹	Energy	Criterion	Measured
Description	ID	hs	Q	Ve		Cost	HL/m	C/m
		(ft)	(cfm)	(fpm)	(bhp)	(\$)	$(\mu g/m^3)/(g/s)$	$(\mu g/m^3)/(g/s)$
CDC Building 110 - Laboratory								
Initial Specifications	CDC-I ab (FAF)	21.0	60.000	3 056	523	\$20 340	230	81
Recommended Specifications	CDC-Lab (CE)	21.0	30,000	1,528	25.9	\$10,054	230 230	162
CDC Building 110 - Emergency Room								
Recommended Specifications (Conventional)		6.4	5,800	6,292				
Recommended Specifications (Axijet 1500)	CDC-ER (EAE)	6.4	8,210	3,898	6.9	\$2,683	230	236
Equivalent Recommended Specifications (Conventional)	CDC-ER (CE)	6.4	10,606	3,000	8.8	\$3,404	230	259
Pomona College NBB - Laboratory								
Initial Specification (Axijet 3650)	PC-Lab (EAE)	12.9	24,000	3,876	15.6	\$6,083	400	Not Tested
Recommended Specifications (Conventional)	PC-Lab (CE)	10.0	15,000	3,000	12.6	\$4,910	400	339
Commercial Medical Research - Laboratory								
Entrained Air Exhaust (Axijet 6000)	CMR-Lab (EAE)	22.8	64,000	4,420	41.4	\$16,093	230	230
Conventional Exhaust	CMR-Lab (CE)	30.0	40,000	3,000	34.7	\$13,482	230	212
Commercial Medical Research - Vivarium								
Entrained Air Exhaust (Axijet 6600)	CMR-Viv (EAE)	22.5	96,000	6,630	67.3	\$26,158	353	92
Conventional Exhaust	CMR-Viv (CE)	17.5	60,000	3,000	52.3	\$20,340	353	209
Commercial Medical Research - Biosafety Cabinet								
Entrained Air Exhaust (Axijet 1825)	CMR-BSC (EAE)	25.0	9,200	4,819	4.2	\$1,649	400	440
Conventional Exhaust	CMR-BSC (CE)	32.0	4,000	3,000	2.9	\$1,139	400	400
Commercial Medical Research - Radioisotope								
Entrained Air Exhaust (Axijet 1825)	CMR-RIE (EAE)	7.0	9,200	4,819	2.2	\$863	4,637	2,892
Conventional Exhaust	CMR-RIE (CE)	17.0	2,000	3,000	1.2	\$453	4,637	3,182

1) Motor size for conventional system based on 4 in static pressure.

Fan Power Requirements - Total Discharge Q

{

Inputs to Calculations

CDC Building 110

CDC Building 110

Laboratory Exhaust Stacks

Parameter	Entrained Air	Conventional
Stack Height (ft)	21	21
Volume Flow (cfm)	60,000	30,000
Exit Velocity (fpm)	3,056	1,528
Fan Size (HP)	52	26
Annual Energy Cost	\$20,340	\$10,054
Design Criterion, HL/m	230	230
Max Measured C/m	81	162

CDC Building 110

Emergency Room

Parameter	Entrained Air	Conventional
Stack Height (ft)	6.4	6.4
Volume Flow (cfm)	8,210	10,606
Exit Velocity (fpm)	3,898	3,000
Fan Size (HP)	6.9	8.8
Annual Energy Cost	\$2,683	\$3,404
Design Criterion, HL/m	230	230
Max Measured C/m	236	259

CDC Building 110 – Lab Exhaust

The Lost Labor.

Pomona Research Lab

Pomona College

Laboratory Exhaust Stacks

Parameter	Entrained Air	Conventional
Stack Height (ft)	12.9	10
Volume Flow (cfm)	24,000	15,000
Exit Velocity (fpm)	3,876	3,000
Fan Size (HP)	15.6	12.6
Annual Energy Cost	\$6,083	\$4,910
Design Criterion, HL/m	400	400
Max Measured C/m	<339	339

Medical Research Laboratory

Laboratory

Parameter	Entrained Air	Conventional
Stack Height (ft)	22.8	30
Volume Flow (cfm)	64,000	40,000
Exit Velocity (fpm)	4,420	3,000
Fan Size (HP)	41.4	34.7
Annual Energy Cost	\$16,093	\$13,482
Design Criterion, HL/m	230	230
Max Measured C/m	230	212

Medical Research Laboratory

Vivarium

Parameter	Entrained Air	Conventional
Stack Height (ft)	22.5	17.5
Volume Flow (cfm)	96,000	60,000
Exit Velocity (fpm)	6,630	3,000
Fan Size (HP)	67.3	52.3
Annual Energy Cost	\$26,158	\$20,340
Design Criterion, HL/m	353	353
Max Measured C/m	92	209

Summary – Specifying Exhausts to Minimize Energy Use

💉 Use guidelines

Caution using vendor effective height specification – evaluate like regular exhaust

Kecommended approach

Z Design criteria development

K Concentration predictions using accurate method

Z Design to meet criteria

Designs that avoid air quality problems and minimize energy costs